In [17]:
"""
Setup the strides, padding and filter weight/bias such that
the output shape is (1, 2, 2, 3).
"""
import tensorflow as tf
import numpy as np
import math
In [18]:
# `tf.nn.conv2d` requires the input be 4D (batch_size, height, width, depth)
# (1, 4, 4, 1)
x = np.array([
[0, 1, 0.5, 10],
[2, 2.5, 1, -8],
[4, 0, 5, 6],
[15, 1, 2, 3]], dtype=np.float32).reshape((1, 4, 4, 1))
print(x)
X = tf.constant(x)
In [21]:
print("out_height = ", math.ceil(float(4 - 2 + 1) / float(2)))
print("out_width = ", math.ceil(float(4 - 2 + 1) / float(2)))
In [25]:
def conv2d(input):
# Filter (weights and bias)
# The shape of the filter weight is (height, width, input_depth, output_depth)
# The shape of the filter bias is (output_depth,)
# TODO: Define the filter weights `F_W` and filter bias `F_b`.
# NOTE: Remember to wrap them in `tf.Variable`, they are trainable parameters after all.
#print(input)
F_W = tf.Variable(tf.truncated_normal((2,2,1,3)))
F_b = tf.Variable(tf.Variable(tf.zeros(3)))
# TODO: Set the stride for each dimension (batch_size, height, width, depth)
strides = [1, 2, 2, 1]
# TODO: set the padding, either 'VALID' or 'SAME'.
padding = 'VALID'
# https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#conv2d
# `tf.nn.conv2d` does not include the bias computation so we have to add it ourselves after.
return tf.nn.conv2d(input, F_W, strides, padding) + F_b
In [26]:
out = conv2d(X)
In [ ]: